Quantification
The simplest method of quantification is through the calibration of an instrument represent a signal vs. the parameter of interest (i.e. analyte concentration)

Sensitivity
- The sensitivity of an instrument or method describes the ability to discriminate between small differences in analyte concentration
- Calibration Sensitivity = the slope of a calibration curve at the concentration of interest
- The greater the slope the higher the sensitivity
Dynamic Range or Calibration Range

- Reported as the range in concentration from the lowest to the highest analyte concentration that can reliably be quantified
 - Low end – detection limit
 - High end – end of linear region or the highest standard used
- Multiple detectors expand range
- Limiting factors
 - Beer’s Law
 - Sample/Standard residuals (memory effect)

Graphing Linear Relationships

\[y = mx + b \]

Quantification

The best calibrations provide a very strong “fit” between a measurement of a signal and the concentrations of standards. How do we determine the “level of fitness”?

Correlation:

What is the variation (“error”) around the relationship?
Correlation:

The **sample mean** is:

\[\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \]

Sum of squares for variable \(x \). This statistics quantifies the spread of variable \(x \):

\[SS_{xx} = \sum_{i=1}^{n} (x_i - \bar{x})^2 \]

Sum of squares for variable \(y \). This statistics quantifies the spread of variable \(y \):

\[SS_{yy} = \sum_{i=1}^{n} (y_i - \bar{y})^2 \]

Correlation:

Sum of the cross-products. This statistics is analogous to the other sums of squares except that it quantifies the extent to which the two variables go together or apart:

\[SS_{xy} = \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) \]

Graphing Linear Relationships

Let’s assume we have a real fish population

<table>
<thead>
<tr>
<th>Weight (lb)</th>
<th>Length (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.18</td>
<td>13.53</td>
</tr>
<tr>
<td>1.35</td>
<td>14.5</td>
</tr>
<tr>
<td>1.71</td>
<td>13.5</td>
</tr>
<tr>
<td>1.72</td>
<td>16.03</td>
</tr>
<tr>
<td>1.99</td>
<td>16.42</td>
</tr>
<tr>
<td>2.02</td>
<td>15.83</td>
</tr>
<tr>
<td>2.58</td>
<td>15.72</td>
</tr>
<tr>
<td>4.26</td>
<td>21.1</td>
</tr>
<tr>
<td>4.5</td>
<td>21.47</td>
</tr>
<tr>
<td>7.31</td>
<td>22.96</td>
</tr>
<tr>
<td>7.99</td>
<td>24.39</td>
</tr>
<tr>
<td>8.1</td>
<td>23.17</td>
</tr>
</tbody>
</table>

Should we expect any relationship between the selected parameters? If yes, which and why?
Fish Data:

Weight (lb)	Length (in)
1.18 | 13.53 |
1.35 | 14.5 |
1.71 | 13.5 |
1.72 | 16.03 |
1.99 | 16.42 |
2.02 | 15.83 |
2.58 | 15.72 |
4.26 | 21.1 |
4.5 | 21.47 |
7.31 | 22.96 |
7.99 | 24.39 |
8.1 | 23.17 |

SSxx: 78.5
SSyy: 182.0
SSxy: 113.8

The correlation coefficient is:

\[r = \frac{SS_{XY}}{\sqrt{(SS_{XX})(SS_{YY})}} \]

Here \(r = 0.95 \)

The correlation coefficient is positive.

Correlation:

the correlation coefficient has no inherent value, and in the exception of strong relationships as in the case presented, \(r \) is hard to use to determine correlational strength. Another statistics is much more useful: the coefficient of determination \((r^2) \)

\[r^2 = 0.91 \]

This statistic quantifies the proportion of the variance of one variable that is explained by the other – Functional?
Correlation: Functional Relationships?

- **Correlation:** Here $r^2 = 0.82$

- **B) Whole data set**

Data Table:

<table>
<thead>
<tr>
<th>Weight (lb)</th>
<th>Length (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.015</td>
<td>3.16</td>
</tr>
<tr>
<td>0.05</td>
<td>6.07</td>
</tr>
<tr>
<td>0.06</td>
<td>5.72</td>
</tr>
<tr>
<td>0.07</td>
<td>6.57</td>
</tr>
<tr>
<td>0.08</td>
<td>4.32</td>
</tr>
<tr>
<td>0.09</td>
<td>5.52</td>
</tr>
<tr>
<td>0.12</td>
<td>8.39</td>
</tr>
<tr>
<td>0.15</td>
<td>8.32</td>
</tr>
<tr>
<td>0.16</td>
<td>7.79</td>
</tr>
<tr>
<td>0.25</td>
<td>6.05</td>
</tr>
<tr>
<td>0.27</td>
<td>8.11</td>
</tr>
<tr>
<td>0.33</td>
<td>8</td>
</tr>
<tr>
<td>0.42</td>
<td>10.13</td>
</tr>
<tr>
<td>0.44</td>
<td>10.97</td>
</tr>
<tr>
<td>0.5</td>
<td>9.72</td>
</tr>
<tr>
<td>0.53</td>
<td>11.02</td>
</tr>
<tr>
<td>0.6</td>
<td>11.33</td>
</tr>
<tr>
<td>0.83</td>
<td>13</td>
</tr>
</tbody>
</table>

Equations:

- $y = 10.339x + 5.1588$ with $R^2 = 0.815$
- $\hat{y} = 1.4492x + 12.819$ with $R^2 = 0.9058$

Ooops, we forgot a section of the fish data set
B) Non-linear relationship

Let’s make a statement about the relationship:

- The weight is \(\propto \) to the volume

\[W \propto V \]

Where:

\[V = A \times L \]

\[A = \alpha \times L^2 \]

\[V = \alpha \times L^3 \]

\[W = \rho \times V \]

Therefore

\[W = \alpha \times \rho \times L^3 \]
$L = k^3 \sqrt{W} = kW^{1/3}$

Log $L = \log (k \times W^{1/3})$

$\log L = \log k + \frac{1}{3} \log W$

$y = b + mx$

Correlation: Residuals

Where: $\hat{y} = ax + b$

- \hat{y} represents the *predicted* value of Y
- a represents the slope of the line
- b represents the intercept of the line

B) Correlation: Linear?

Testing the “spread” of the residuals

$\text{residuals} = (y_i - y')$
B) Correlation: Linear?
Testing the “spread” of the residuals

$\text{residuals} = (y_i - y')$

Determining the concentration of an unknown: Standard Addition

- Standard Addition: Useful method for analyzing complex sample in which matrix effect can be substantial
- Common form: Adding one or more increments of a standard solution (solid) to sample aliquots of the same size \(\Rightarrow \) "spiking" the sample.

Let C_{unk} = concentrations and V = volume
- “unk” = unknown; “std” = standard

\[
C_{\text{unk}} = \frac{C_{\text{unk}}V_{\text{unk}} + C_{\text{std}}V_{\text{std}}}{V_{\text{tot}}} = \frac{C_{\text{unk}}V_{\text{unk}}}{V_{\text{tot}}} + \frac{C_{\text{std}}V_{\text{std}}}{V_{\text{flask}}}
\]

Let S = instrument signal and k = proportionality constant

\[
S = k \frac{C_{\text{unk}}V_{\text{unk}}}{V_{\text{tot}}} + k \frac{C_{\text{std}}V_{\text{std}}}{V_{\text{tot}}}
\]
Determining the concentration of an unknown:

Standard Addition

- Let “S” = instrument signal and “k” = proportionality constant

\[
S = k \frac{C_{\text{std}} V_{\text{std}}}{V_{\text{tot}}} + k \frac{C_{\text{unk}} V_{\text{unk}}}{V_{\text{tot}}}
\]

\[
S = m V_{\text{std}} + b
\]

\[
m = k \frac{C_{\text{std}}}{V_{\text{tot}}} \\
b = k \frac{V_{\text{unk}} C_{\text{unk}}}{V_{\text{tot}}}
\]

Standard Addition

- Standard Additions can also be applied to solids:

\[
C_{\text{tot}} = \frac{\left([C]_{\text{unk}} M_{\text{unk}} \right) + \left([C]_{\text{tot}} M_{\text{std}} \right)}{M_{\text{unk}} + M_{\text{std}}} \\
\]

\[
[C]_{\text{unk}} = \frac{\left([C]_{\text{tot}} \times (M_{\text{unk}} + M_{\text{std}}) \right) - \left([C]_{\text{tot}} M_{\text{std}} \right)}{M_{\text{unk}}}
\]